R-web 資料分析應用:迴歸分析

李智慎 副統計分析師

上圖為一模擬資料,可以很直覺的看出 X 與 Y 有正相關,且每個資料 點都落在直線附近,在日常生活中許多事物彼此間常常存在著線性關係, 如要將變數與變數之間的關係以具體的式子表達,其中一個簡單且常用的 方法就是利用簡單線性迴歸模型來分析,兩變項 X 與 Y 關係可表示成Y = $\beta_0 + \beta_1 X$,其中 Y、X 分別稱為依變數(dependent variable)與自變數 (independent variable),由此式子模型可以很明確的從截距項 β_0 和係數 β_1 得 第1頁

知自變數改變時對依變數的影響,當自變數增加1單位,依變數則增加β₁ 單位,但現實生活中實際例子幾乎不存在這種完美的線性關係,會有各種 其他因素造成誤差存在,因此會在模型中加入一個隨機誤差項ε_i來表示, 完整的簡單線性迴歸模型可表示為

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

隨機誤差項 ϵ_i 在統計學上假設為常態分配,且平均數為0變異數為 σ^2 , iid

可寫成 $\epsilon_i \sim N(0, \sigma^2)$, iid為independent and identically distributed的縮寫,表

示誤差項Ei彼此互相獨立且相同分配。迴歸分析中限制依變數需為連續型 變數而自變數則無限制連續離散皆可,假如想建造離散型依變數的迴歸模 型則可用邏輯斯迴歸,這部份我們將會在下期作介紹。而本期同樣統一使 用源自基隆社區為基礎的整合篩選計畫(Keelung Community-based Integrated Screen Program, KCIS)的心血管疾病資料作範例資料檔,有關此 資料的詳細資訊及變數定義請參閱<u>首期生統eNews</u>。

▶ 迴歸模型係數的估計-最小平方法

我們知道迴歸模型為一種表示自變數與依變數之間關係的方式,但迴歸係數通常都是未知的,我們該設定係數為多少才是一個好的迴歸模型呢? 最簡的的方法就是最小平方法,其精神在於讓迴歸模型的誤差項平方合能 最小,即最小化物差平方總合 $\sum_{i=1}^{n} (Y_i - \beta_0 + \beta_1 X_i)^2$,可利用微分的方式進 而求得預估值 $\hat{\beta}_0 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \cdot \hat{\beta}_1 = \bar{Y} - \hat{\beta}_1 \bar{X}$,而此時誤差項變異數的 估計值為 $\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}$,其中 $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ 利用到前面所得的係數估計 值β做計算。

而模型適不適用與迴歸係數為不為 0 也有關係,因此可以做迴歸係數 是否為 0 的檢定,即虛無假設為 $H_0: \beta_1 = 0$,對應的檢定統計量為 $t = \frac{\hat{\beta}_1}{s.e(\hat{\beta}_1)}$, 而s. $e(\hat{\beta}_1) = \hat{\sigma} \sqrt{1/\Sigma_{i=1}^n (X_i - \bar{X})}$ 。當虛無假設為真時,此統計量服從自由度 為 n-2 的 t 分佈。

▶ R Web-迴歸分析操作步驟

在初階使用者的模式下,從 R-web 主選單中依序點選【分析方法】→ 【迴歸模式】→【迴歸分析】即可進入分析頁面。

我們以 CVD 資料"SysBP" (心臟收縮壓)為依變數,"Age" (年齡)為自變數作分析, R-Web 操作圖解如下

步驟一:資料匯入	
選擇要進行分析的資料檔或上傳檔案	使用者個人資料檔 ▼ 檢視資料型態(開新視窗) 34MB CVD CVD CVD_100 CVD_15 CVD_5P 您所選擇的資料檔為: CVD
步驟二:參數設定 選擇要進行分析的變數	所有變數 応變數 CVD Write Write
	Waist DiaBP AC HDL TG ▼
開始分	分析 進階選項 重新設定

第一步,先選擇要進行分析的資料檔,點選"使用者個人資料檔"後選 擇"CVD"的檔案(心血管疾病資料),系統將自動帶出參數設定畫面。在步 驟二選擇要進行分析的變數,在此設定依變數為"SysBP"(心臟收縮壓), 第3頁 自變數為"Age" (年龄)。最後點選【進階選項】將出現選如下圖,

模式設定	輸出及圖形	殘差及影	響點	模式準確性	
☑ 進行列	淺差分析: ☞☆――灶	网络分析	☑礎羊囸		
	。[2] [2] [2] [2] [4] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2	回调立任	◎ 浅庄回		
☑ DFI	FITS @Cook距	離 槓桿	值		
 ✓ 共参 ● 不存檔 	ee異比例	SETAS			
○ 另存新	檔:				
多重共	も線性診斷				
	儲	存設定 鼺	閉視窗		

點選上方"殘差及影響點"標籤後勾選"殘差圖"再點擊【儲存設定】,完 成設定後即可點擊步驟二下方【開始分析】。

迴歸係數估計^I:

<mark>係數</mark>	估計值	標準差	t檢定統計量	p值 ^{II}	參數的 959 95% C.I. for	% <mark>信</mark> 賴區間 estimations
coefficient	estimation	std. err.	t-statistic	p-value	下界	上界
					lower	upper
(截距項)	93.7881	0.2639	355.3254	< 2.22e-16 ***	93.2708	94.3054
Age	0.6298	0.0054	116.4961	< 2.22e-16 ***	0.6192	0.6404

I:依變數為SysBP,模式包含常數項

Ⅱ:顯著性代碼: '***' :<0.001, '**' :<0.01, '*' :<0.05, '#' :<0.1

上圖為分析結果其中的迴歸係數估計表,當顯著水準為0.05 時使用信 賴區間法或 p 值法得到雙尾檢定結果顯示"SysBP"(心臟收縮壓)與" Age"(年齡)有顯著的相關,且年齡每增加一歲,收縮壓會增加0.6298, 第4頁 也就是迴歸模型係數β₁的估計值,而截距項β₀的估計值為93.7881,帶入係 數估計值後我們可得到迴歸預估模型如下

$$\widehat{\mathbf{Y}}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i \quad \Longrightarrow \quad \widehat{\mathbf{Y}}_i = 93.7881 + 0.6298 X_i$$

有了此預估模型則可以用來預測依變數,例如有一人的年齡為27歲, 則套入此預估模型可估計此人心臟收縮壓平均測量值為110.7927。簡單線 性迴歸是直接假設依變數和自變數為線性關係,再對迴歸係數作是否為0 的檢定,但事實上依變數與自變數之間可能不為線性關係,有各種不同的 方法可以做檢測,而簡單線性迴歸模型中最常被使用的是判定係數 (coefficient of determination, R²),又稱R平方值,從定義上來說,R²可以 表示自變數能解釋多少比例的依變數變異,數值會介於0~1之間,愈接近 1 代表此模型愈能解釋依變數的變化,其等式為

$$R^{2} = \frac{\sum_{i}^{n} \left(\hat{Y}_{i} - \bar{Y} \right)^{2}}{\sum_{i}^{n} (Y_{i} - \bar{Y})^{2}}$$

其值可由分析結果"迴歸模式的變異數分析"中得知,如下圖所示

虛無假設 :迴歸模式不顯著							
來源 source	平方和 sum of squares	自由度 d.f.	均方和 mean square	F檢定統計量 F-statistic	臨界值 F(d.f.1,d.f.2,1-α)	p-值 ^I p-value	
迴歸 regression	4844368.0094	1	4844368.0094	13571.3512	3.8416	< 1e-04 ***	
誤差 error	22577076.3777	63249	356.9555				
總和 total	27421444.3871	63250					
判定係數(R-square):17.67 % 調整判定係數(adjusted R-square):17.67 %							
I:顯著性代碼: '***' :< 0.001, '**' :< 0.01, '*' :< 0.05, '#' :< 0.1							

迴歸模式的變異數分析:

由結果可得知所得到的迴歸預估模型判定係數為 0.1767,表示使用此預 估模型自變數對於解釋依變數變異的能力不是很好。

上圖為"Age"(年齡)與"SysBP"(心臟收縮壓)的散佈圖,藍色點代表各個實際資料點,而紅色線為依照迴歸預估模型 $\hat{Y}_i = 93.7881 + 0.6298X_i$ 所得的迴歸線,可看出年齡與心臟收縮有線性關係但並不非常的明顯,且資料分佈的位置並沒有明顯向迴歸線集中,與 R^2 值0.1767相符合。

因為在此預估迴歸模型下,自變數 Age 並不能充分解釋依變數 SysBP 的變異,且並無非常明顯的線性關係,建議可以換個變數試試,以下我們 選擇"DiaBP"(心臟舒張壓)為自變數且重複與之前同樣的步驟,可得到 第6頁 新的迴歸分析結果如下

• 迴歸模式的變異數分析:

虛無假設 :迴歸模式不顯著							
來源	平方和	自由度	均方和	F檢定統計量	臨界值	p-值 ^I	
source	sum of squares	d.f.	mean square	F-statistic	F(d.f.1,d.f.2,1-α)	p-value	
迴歸	15045376 0369	1	15045376 0369	77879 2002	3 8416	< 1e-04 ***	
regression	1001007010000	-	10010070100000		010 110	120 01	
設差	12210101.011	63203	193.1886				
error							
總和	27255477 0478	63204					
total	27233177.0170	00201					
判定 係數(R-square) :55.2 %							
調整判定係數(adjusted R-square):55.2 %							

I:顯著性代碼: '***' :< 0.001, '**' :< 0.01, '*' :< 0.05, '#' :< 0.1

迴歸係數估計^I:

係數	估計值	標準差	t檢定統計量	p值 ^{II}	參數的 95% 信賴區間 95% C.I. for estimation	
coefficient	estimation	std. err.	t-statistic	p-value	下界 Iower	上界 upper
(截距項)	22.5819	0.3649	61.885	< 2.22e-16 ***	21.8667	23.2971
DiaBP	1.2892	0.0046	279.0685	< 2.22e-16 ***	1.2801	1.2982

I: 依變數為SysBP, 模式包含常數項

Ⅱ:顯著性代碼: '***' :< 0.001, '**' :< 0.01, '*' :< 0.05, '#' :< 0.1

由上圖可得依變數"SysBP"(心臟收縮壓)與自變數"DiaBP"(心 臟舒張壓)的簡單線性迴歸結果,顯著水準為0.05時,雙尾檢定結果顯示 有顯著的關係,且判定係數R²為0.552與自變數為"Age"(年齡)時的迴 歸模型比較起來,"DiaBP"(心臟舒張壓)更能解釋依變數"SysBP"(心 臟收縮壓)的變異,下圖為依變數"SysBP"(心臟收縮壓)與自變數" DiaBP"(心臟舒張壓)的散佈圖

由此圖可發現兩者有較為明顯的線性關係,且資料也較向迴歸線集中,因此可判斷依變數"SysBP"(心臟收縮壓)與自變數"DiaBP"(心臟舒 張壓)有更高度的線性相關。

本期生統 eNews 的介紹到此告一段落,此次介紹了迴歸分析中的簡單線性迴歸方法,希望大家能從圖表中更能理解簡單線性迴歸模型與資料間的關係。下一期的生統 eNews 將為大家介紹迴歸模式的分析方法—『邏輯斯迴歸分析』,敬請期待!